

Tetrahedron 59 (2003) 9887-9893

TETRAHEDRON

A valuable heterocyclic ring transformation: from isoxazolin-5(2H)-ones to quinolines

Giorgio Abbiati,^a Egle M. Beccalli,^{a,*} Gianluigi Broggini^b and Caterina Zoni^a

^aIstituto di Chimica Organica "A.Marchesini", Facoltà di Farmacia, Università di Milano, via Venezian 21, 20133 Milano, Italy ^bDipartimento di Scienze Chimiche, Fisiche e Matematiche, Università dell'Insubria, via Valleggio 11, 22100 Como, Italy

Received 25 July 2003; revised 18 September 2003; accepted 16 October 2003

Abstract—A new synthesis of quinoline derivatives was achieved by catalytic hydrogenation of 3,4-disubstituted 2-(2-formylphenyl)isoxazolin-5(2H)-ones. In the same way, 2,3-disubstituted [1,8]naphthyridine was obtained. © 2003 Elsevier Ltd. All rights reserved.

The development of new methods for the synthesis of nitrogen-containing heterocycles is of extreme importance in organic chemistry. We reported in the past years, the synthesis of pyrroles,¹ oxazinones,² imidazoles,³ 2-pyrazinones,⁴ isoxazoles⁵ starting from isoxazolin-5-ones. As a part of our ongoing interest in the study of the reactivity of the isoxazolone nucleus as a synthon to obtain different heterocyclic systems, we describe now a new and easy approach to the quinoline nucleus starting from 2-aryl-3,4disubstituted isoxazolin-5(2H)-ones. The presence of the quinoline scaffold in the framework of various pharmacologically active compounds with antiasthmatic,⁶ antiinflammatory⁷ and tyrosine kinase inhibiting properties⁸ continues to spur synthetic efforts regarding their acquisition.⁹

The synthesis of quinolines has been a focus of organic chemistry for more than 100 years.¹⁰ Most of the classical synthetic routes are limited to certain substitution patterns and suffer from harsh reaction conditions and poor yields. A precedent paper describing the synthesis of the 2,4dichloroquinolines starting from 3-arylisoxazol-5(4H)ones via Vilsmeier-Haack reaction is available.¹¹ The overall synthetic sequence to obtain quinolines consisted of three very simple steps: (a) isolation of the 3,4-disubstituted isoxazolin-5(2H)-one salt 1'a-g; (b) nucleophilic substitution with the 2-fluorobenzaldehyde derivatives 2a or 2b to give the adducts 3; (c) catalytic hydrogenation reaction to give directly the desired quinoline derivatives 5.

Owing to the strong acidity of the isoxazolin-5(4H)-one nucleus, the reaction with a base (TEA or EtONa) gave the

Scheme 1. 0040-4020/\$ - see front matter © 2003 Elsevier Ltd. All rights reserved. doi:10.1016/j.tet.2003.10.053

corresponding salt. On the basis of our research on the 5(2H)-isoxazolones as nucleophiles¹² we have considered the reaction of the isoxazolyl anion with a proper aryl halide in a nucleophilic aromatic substitution to give the 2-aryl derivatives 3 (Scheme 1 and Table 1). The nucleophilic substitution was possible only when the aryl halide was activated by an electron-withdrawing group in the para position to the halogen atom. The reaction was performed with 2-fluoro-5-nitrobenzaldehyde 2a and with 2-fluoro-5trifluoromethylbenzaldehyde 2b. Better yields were obtained with 2a in comparison to 2b.

It is known that catalytic hydrogenation of the isoxazolin-5ones favours the N-O bond cleavage.¹³ Consequently, the ring opening gave the enamine intermediate 4 susceptible to

Keywords: quinolines; isoxazolones; catalytic hydrogenation; naphthyridine.

^{*} Corresponding author. Tel.: +39-0250314479; fax: +39-0250314476; e-mail: egle.beccalli@unimi.it

Table 1. Data for Scheme 1

Substrate	R	R^1	Substrate	\mathbb{R}^2	Product	Yield (%)
1a	CH₃	CH ₂ Ph	2a	NO_2	3aa	99
1b	CH ₃	Ph	2a	NO_2^2	3ba	78
1c	CH ₂ CH ₂ CH ₃	CH ₂ Ph	2a	NO_2	3ca	70
1d	Ph	CH ₃	2a	NO_2	3da	95
1e	Ph	CH ₂ CH ₃	2a	NO_2	3ea	83
1f	$-(CH_2)_4-$	2a	NO_2	3fa	99	
1g	-CH ₂ CH ₂ SCI	2a	NO_2	3ga	87	
1a	CH ₃	CH ₂ Ph	2b	CF ₃	3ab	70
1b	CH ₃	Ph	2b	CF ₃	3bb	75
1c	CH ₂ CH ₂ CH ₃	CH ₂ Ph	2b	CF ₃	3cb	68
1d	Ph	CH ₃	2b	CF ₃	3db	62
1e	Ph	CH ₂ CH ₃	2b	CF ₃	3eb	68
1f	$-(CH_2)_4-$		2b	CF_3	3fb	67
1g	-CH ₂ CH ₂ SCH	2b	CF_3	3gb	68	

decarboxylation and subsequent intramolecular cyclocondensation on the formyl group. The hydrogenation reaction was performed with different catalysts and solvents. Better yields were obtained with palladium on charcoal in ethanol as a solvent. In the case of the substrates **3aa-ga** containing the nitro group, in all conditions, the 6-aminoquinoline derivatives **6** were obtained as major product, accompanied by a minor amount of the quinolines **5**. In the case of substrates **3da**, **3ea**, **3ga** only the corresponding aminoquinolines **6da**, **6ea** and **6ga** were isolated (Scheme 2 and Table 2).

Scheme 2.

Only in the case of compound **3ga** containing a sulfur atom, the quinoline **5ga** was the only product. With the substrates **3ab-gb** including the trifluoromethyl group on the aromatic ring, besides the desired quinolines **5** tetrahydroquinolines **7** were also isolated, with the exception of **5gb** (Scheme 3 and Table 2). The relative configuration of the two stereocentres was assumed to be *cis* on the basis of the vicinal coupling constants, whenever detectable.¹⁴

With the aim to extend the synthetic procedure for the preparation of different heterocyclic systems, the reaction

```
Table 2. Data for Schemes 2 and 3
```


Scheme 3.

was tested with the isoxazolone salt 1'a and 2-fluoro-3formylpyridine. The adduct **8** was submitted to the hydrogenation process and the reaction gave the [1,8]naphthyridine **9** in good yield. Besides the fully aromatic product, the reductive process gave also the [1,8]tetrahydronaphthyridine **10** arising from the partial hydrogenation of the pyridine ring (Scheme 4). The ratio between the two products depends on the reaction conditions. Performing the hydrogenation with Pd/C in ethyl acetate the ratio was 6:1 in favour of the naphthyridine **9**, with Pd/C in ethanol the result was opposite with a ratio 1:3 in favour of the tetrahydronaphthyridine **10**.

Scheme 4.

In conclusion, this paper shows a new and easy synthetic pathway to the quinoline system allowing a very large substitution patterns. Furthermore, starting from suitable substrate, the synthesis of other heterocyclic systems is possible.

1. Experimental

1.1. General

Melting points were determined on a Buchi 510 or an

Substrate	R	R^1	Product 5	Yield (%)	Product 6	Yield (%)	Product 7	Yield (%)
3aa	CH ₃	CH ₂ Ph	5aa	8	6aa	84		
3ba	CH ₃	Ph	5ba	6	6ba	66		
3ca	CH ₂ CH ₂ CH ₃	CH ₂ Ph	5ca	10	6ca	64		
3da	Ph	CH ₃	5da	-	6da	97		
3ea	Ph	CH ₂ CH ₃	5ea	_	6ea	98		
3fa	$-(CH_2)_4-$	2 5	5fa	-	6fa	55		
3ga	-CH ₂ CH ₂ SCH ₂ -		5ga	84	6ga	_		
3ab	CH ₃	CH ₂ Ph	5ab	45	0		7ab	14
3bb	CH ₃	Ph	5bb	41			7bb	41
3cb	CH ₂ CH ₂ CH ₃	CH ₂ Ph	5cb	58			7cb	23
3db	Ph	CH ₃	5db	38			7db	48
3eb	Ph	CH ₂ CH ₃	5eb	61			7eb	28
3fb	$-(CH_2)_4-$	- 2- 5	5fb	32			7fb	40
3gb	-CH ₂ CH ₂ SCH ₂ -		5gb	77			7gb	-

Electrothermal 9100 apparatus and are uncorrected. IR spectra were recorded on a Jasco IR Report 100 spectrophotometer, in nujol mull for solids and as a liquid film for oils. ¹H NMR and ¹³C NMR spectra were recorded on a Varian Gemini 200, Bruker AC 200 and Bruker Avance 300 spectrometer in CDCl₃ solution unless otherwise stated. Column chromatography was performed on Merck Kieselgel 60, 0.063–0.2 mm. Evaporation was carried out under vacuum in a rotary evaporator.

Compounds **1a**,¹⁵ **1b**,¹⁶ **1c**,¹⁷ **1d**,¹⁸ **1e**,¹⁹ **1f**,²⁰ were prepared according to the literature procedures.

1.1.1. Synthesis of 1,4,6,7-tetrahydrothiopyrano[4,3-c]isoxazol-3-one 1g. To a solution of 4-oxo-tetrahydro-thiopyran-3-ethylcarboxylate²¹ (5.6 g, 30 mmol) in EtOH (80 ml) a mixture of hydroxylamine hydrochloride (3.12 g, 45 mmol) and AcONa (3.69 g, 45 mmol) in water (20 ml) was added. After heating to reflux for 2 h, the solvent was evaporated, water was added (60 ml) and the mixture extracted with CH₂Cl₂ (2×40 ml). The organic layer was dried, filtered and evaporated and the residue purified by silica gel column chromatography, eluent CH₂Cl₂ to give 1g, 90% yield, mp 107-108°C (white crystals from CH₂Cl₂-hexane); IR 1720, 1692 cm⁻¹; ¹H NMR (CD₃COCD₃): 2.78 (t, 2H, J=5.5 Hz), 2.96 (t, 2H, J=5.5 Hz), 3.29 (s, 2H), 10.30 (br s, 1H, D₂O); ¹³C NMR (CD₃COCD₃): 19.7, 23.8, 23.9 (CH₂), 96.6, 164.7 (C), 170.4 (CO). Anal. calcd for C₆H₇NO₂S: C, 45.86; H, 4.46; N, 8.92. Found: C, 45.69; H, 4.52; N, 8.80.

1.1.2. Sodium salts 1' of 3,4-disubstituted 5(2*H***)-isoxazolones 1: general procedure. A methanolic solution of NaOMe, prepared from MeOH (5 ml) and Na (92 mg, 4 mmol) was added to a solution of the isoxazolin-5-one 1 (4 mmol) in MeOH (10 ml). After evaporation of the solvent, the residue was dried for 1 h at 60^{\circ}C/5 mbar.**

1.1.3. Synthesis of 2-aryl-3,4-disubstituted isoxazolin-5(2*H*)-ones 3: general procedure. To a solution of isoxazolin-5(2*H*)-ones sodium salt 1' (2 mmol) in DMF (3 ml), the 5-substituted-2-fluorobenzaldehyde 2a or 2b (3 mmol) was added. The mixture was heated to $45-50^{\circ}$ C under stirring for the reported time (see below) and diluted with brine: (i) for the compounds **3aa**-ga, the solid formed was filtered and purified by crystallization, (ii) for the compounds **3ab**-gb, the mixture was extracted with Et₂O (2×20 ml), the organic layer dried (Na₂SO₄), filtered, evaporated and the residue purified by crystallization or by silica gel column chromatography (eluent see below).

From **1a** and **2a**, heated for 0.5 h, **3aa**, mp 46–47°C (yellow crystals from hexane); IR: 1748, 1698, 1610, 1490 cm⁻¹; ¹H NMR: 3.72 (s, 3H), 5.32 (s, 2H), 7.33 (m, 5H), 7.46 (d, 1H, J=8.8 Hz), 8.52 (dd, 1H, J=2.5, 8.8 Hz), 8.86 (d, 1H, J=2.5 Hz), 10.45 (s, 1H); ¹³C NMR: 16.8 (CH₃), 29.2 (CH₂), 116.8, 122.6, 125.5, 127.2 (CHAr), 128.4 (2×CHAr), 129.2 (2×CHAr), 127.3, 130.2, 137.7, 143.6, 154.2, 158.2 (C), 168.5 (CO), 186.2 (CHO). Anal. calcd for C₁₈H₁₄N₂O₅: C, 63.90; H, 4.17; N, 8.28. Found: C, 63.79; H, 4.33; N, 8.23.

From **1b** and **2a**, heated for 2 h, **3ba**, mp 154–156°C (orange crystals from Et₂O); IR: 1720, 1686, 1613, 1530,

1377 cm⁻¹; ¹H NMR: 2.31 (s, 3H), 7.41–7.65 (m, 6H), 8.58 (dd, 1H, J=2.5, 8.8 Hz), 8.91 (d, 1H, J=2.5 Hz), 10.51 (s, 1H); ¹³C NMR: 13.5 (CH₃), 124.9, 129.5 (CHAr), 127.4 (2×CHAr), 128.6 (2×CHAr), 129.1 (2×CHAr), 107.5, 128.3, 133.2, 144.1, 148.3, 158.8 (C), 168.7 (CO), 186.7 (CHO). Anal. calcd for C₁₇H₁₂N₂O₅: C, 62.96; H, 3.73; N, 8.64. Found: C, 63.03; H, 3.80; N, 8.52.

From **1c** and **2a**, heated for 2 h, **3ca**, mp 85–87°C (yellow crystals from Et₂O–hexane); IR: 1722, 1613, 1528 cm⁻¹; ¹H NMR: 0.82 (t, 3H, *J*=7.3 Hz), 1.20–1.40 (m, 2H), 2.36 (t, 2H, *J*=7.3 Hz), 3.75 (s, 2H), 7.33 (m, 5H), 7.40 (d, 1H, *J*=8.8 Hz), 8.52 (dd, 1H, *J*=2.5, 8.8 Hz); 8.87 (d, 1H, *J*=2.5 Hz), 10.51 (s, 1H); ¹³C NMR 14.1 (CH₃), 21.6, 28.5, 28.8 (CH₂), 124.6, 127.3, 127.8, 129.2, 129.3, 129.6 (CHAr), 128.6 (2×CHAr), 107.7, 134.2, 138.3, 145.6, 148.8, 154.8 (C), 164.8 (CO), 186.9 (CHO). Anal. calcd for C₂₀H₁₈N₂O₅: C, 65.57; H, 4.95; N, 7.65. Found: C, 65.42; H, 5.03; N, 7.60.

From **1d** and **2a**, heated for 2 h, **3da**, mp 153–155°C dec. (light yellow crystals from Et₂O); IR: 1724, 1681, 1622, 1519, 1380 cm⁻¹; ¹H NMR: 2.14 (s, 3H), 7.06 (d, 1H, J=8.8 Hz), 7.42 (m, 2H), 7.50 (m, 3H), 8.26 (dd, 1H, J=2.5, 8.8 Hz), 8.80 (d, 1H, J=2.5 Hz), 10.68 (s, 1H); ¹³C NMR: 11.2 (CH₃), 105.3, 124.5, 134.9, 145.2, 146.9, 157.3 (C), 116.8, 122.6, 127.2, 127.7 (CHAr), 126.2 (2×CHAr), 128.4 (2×CHAr), 170.3 (CO), 186.4 (CHO). Anal. calcd for C₁₇H₁₂N₂O₅: C, 62.96; H, 3.73; N, 8.64. Found: C, 62.80; H, 3.89; N, 8.48.

From **1e** and **2a**, heated for 24 h, **3ea**, mp 143–145°C (light yellow crystals from Et₂O–hexane); IR: 1740, 1682, 1530, 1377 cm⁻¹; ¹H NMR: 1.28 (t, 3H, *J*=7.3 Hz), 2.54 (q, 2H, *J*=7.3 Hz), 7.09 (d, 1H, *J*=8.4 Hz), 7.38 (m, 2H), 7.50 (m, 3H), 8.24 (dd, 1H, *J*=2.5, 8.4 Hz), 8.78 (d, 1H, *J*=2.5 Hz), 10.64 (s, 1H); ¹³C NMR: 13.3 (CH₃), 16.4 (CH₂), 111.2, 127.2, 133.0, 146.0, 147.4, 160.3 (C), 124.1, 126.5, 126.9, 128.3, 129.8, 131.6 (CHAr), 128.8 (2×CHAr), 170.1 (CO), 186.6 (CHO). Anal. calcd for C₁₈H₁₄N₂O₅: C, 63.90; H, 4.17; N, 8.28. Found: C, 64.08; H, 4.31; N, 8.15.

From **1f** and **2a**, heated for 5 h, **3fa**, mp 156°C dec. (cream crystals from acetone); IR: 1749, 1688, 1377 cm⁻¹; ¹H NMR (CD₃OD): 1.83 (m, 4H), 2.86 (m, 4H), 7.51 (d, 1H, J=8.8 Hz), 8.33 (dd, 1H, J=2.6, 8.8 Hz), 8.64 (d, 1H, J=2.6 Hz), 10.56 (s, 1H); ¹³C NMR: 18.3, 21.3, 21.7, 22.7 (CH₂), 92.8, 122.7, 124.4 (CHAr), 101.8, 140.8, 141.8, 148.8, 165.5 (C), 171.3 (CO), 186.9 (CHO). Anal. calcd for C₁₄H₁₂N₂O₅: C, 58.33; H, 4.20; N, 9.72: Found: C, 58.20; H, 4.29; N, 9.73.

From **1g** and **2a**, heated for 5 h, **3ga**, mp 125–127°C (ochre crystals from AcOEt–hexane); IR:1722, 1672, 1590, 1380 cm⁻¹; ¹H NMR: 2.59 (t, 2H, *J*=5.9 Hz), 2.90 (t, 2H, *J*=5.9 Hz), 3.52 (s, 2H), 7.56 (d, 1H, *J*=8.8 Hz), 8.56 (dd, 1H, *J*=2.5, 8.8 Hz), 8.87 (d, 1H, *J*=2.5 Hz), 10.44 (s, 1H); ¹³C NMR: 19.9, 23.9, 25.3 (CH₂), 101.7, 133.0, 144.5, 148.3, 163.4 (C), 124.1, 127.5, 129.1 (CHAr), 168.1 (CO), 187.7 (CHO). Anal. calcd for $C_{13}H_{10}N_2O_5S$: C, 50.98; H, 3.29; N, 9.15. Found: C, 50.91; H, 3.41; N, 9.08.

From 1a and 2b, heated for 24 h, SiO₂ eluent: hexane-Et₂O

2:1, **3ab**, mp 154–156°C (cream crystals from AcOEt); IR: 1730, 1612, 1463, 1374 cm⁻¹; ¹H NMR: 2.04 (s, 3H), 3.72 (s, 2H), 7.27–7.34 (m, 5H), 7.39 (d, 1H, *J*=8.4 Hz), 7.95 (dd, 1H, *J*=2.2, 8.4 Hz), 8.31 (d, 1H, *J*=2.2 Hz), 10.47 (s, 1H). ¹³C NMR: 13.5 (CH₃), 28.4 (CH₂), 106.5, 133.1, 127.8, 144.2, 160.3 (C), 123.1 (CF₃), 132.4 (C–CF₃), 126.7, 127.1, 128.5, 131.8 (CHAr), 128.3 (2×CHAr), 129.6 (2×CHAr), 169.3 (C=O), 187.6 (CHO). Anal. calcd for C₁₉H₁₄F₃NO₃: C, 63.16; H, 3.91; N, 3.88. Found: C, 63.17; H, 3.77; N, 4.03.

From **1b** and **2b**, heated for 24 h, SiO₂ eluent: hexane–Et₂O 3:1, **3bb**, mp 99°C (orange crystals from Et₂O); IR: 1732, 1698, 1613 cm⁻¹; ¹H NMR: 2.28 (s, 3H), 7.38–7.59 (m, 6H), 8.01 (d, 1H, J=8.2 Hz), 8.33 (s, 1H), 10.47 (s, 1H); ¹³C NMR: 13.4 (CH₃), 122.9 (CF₃), 126.6, 127.1, 128.4, 131.8 (CHAr), 128.3 (2×CHAr), 128.9 (2×CHAr), 106.7, 133.3, 126.9, 142.4, 159.1 (C), 132.7 (C–CF₃), 168.9 (C=O), 187.4 (CHO). Anal. calcd for C₁₈H₁₂F₃NO₃: C, 62.25; H, 3.48; N, 4.03; Found: C, 62.31; H, 3.51; N, 4.08.

From **1c** and **2b**, heated for 5 h, SiO₂ eluent: hexane– CH₂Cl₂ 10:1 to CH₂Cl₂, **3cb**, mp 91–93°C (white crystals from hexane–Et₂O); IR: 1746, 1698, 1613 cm⁻¹; ¹H NMR: 0.89 (t, 3H, *J*=7.3 Hz), 1.35 (tq, 2H, *J*=7.3, 7.3 Hz), 2.34 (t, 2H, *J*=7.3 Hz), 3.74 (s, 2H), 7.26–7.40 (m, 6H), 7.95 (dd, 1H, *J*=1.8, 8.4 Hz), 8.32 (d, 1H, *J*=1.8 Hz), 10.51 (s, 1H); ¹³C NMR: 13.9 (CH₃), 21.5, 28.3, 28.6 (CH₂), 107.0, 133.8, 138.4, 143.7, 165.1 (C), 123.0 (CF₃), 126.4, 127.1, 127.4, 131.9 (CHAr), 128.5 (2×CHAr), 129.1 (2×CHAr), 131.1 (C–CF₃), 171.2 (C=O), 187.7 (CHO). Anal. calcd for C₂₁H₁₈F₃NO₃: C, 64.78; H, 4.66; N, 3.60. Found: C, 64.86; H, 4.81; N, 3.46.

From **1d** and **2b**, heated for 1 h, SiO₂ eluent: hexane–Et₂O 3:1, **3db**, mp 98–100°C (white crystals from hexane); IR: 1722, 1690, 1608 cm⁻¹; ¹H NMR: 2.13 (s, 3H), 7.02 (d, 1H, J=8.4 Hz), 7.37–7.49 (m, 5H), 7.68 (dd, 1H, J=2.2, 8.4 Hz), 8.25 (d, 1H, J=2.2 Hz), 10.73 (s, 1H); ¹³C NMR: 8.3 (CH₃), 105.8, 133.2, 127.8, 144.9, 161.1 (C), 123.1 (CF₃), 132.0 (C–CF₃), 126.2, 126.7, 131.4, 131.6 (CHAr), 128.5 (2×CHAr), 129.8 (2×CHAr), 171.1 (C=O), 187.8 (CHO). Anal. calcd for C₁₈H₁₂F₃NO₃: C, 62.25; H, 3.48; N, 4.03; Found: C, 62.37; H, 3.53; N, 3.84.

From **1e** and **2b**, heated for 2 h, SiO₂ eluent: hexane– CH₂Cl₂ 1:1, **3eb**, mp 114–116°C (white crystals from Et₂O–hexane); IR: 1737, 1698, 1607 cm⁻¹; ¹H NMR: 1.28 (t, 3H, J=7.3 Hz), 2.54 (q, 2H, J=7.3 Hz), 7.05 (d, 1H, J=8.4 Hz), 7.38–7.49 (m, 5H), 7.70 (dd, 1H, J=1.8, 8.4 Hz), 8.23 (d, 1H, J=1.8 Hz), 10.69 (s, 1H); ¹³C NMR: 13.4 (CH₃), 16.4 (CH₂), 110.8, 129.1, 128.9, 144.6, 160.9 (C), 126.0, 126.4, 131.2, 131.4 (CHAr), 128.3 (2×CHAr), 129.7 (2×CHAr), 123.1 (CF₃), 132.9 (C–CF₃), 170.6 (C=O), 187.6 (CHO). Anal. calcd for C₁₉H₁₄F₃NO₃: C, 63.16; H, 3.91; N, 3.88. Found: C, 63.25; H, 3.99; N, 3.90.

From **1f** and **2b**, heated for 2 h, SiO₂ eluent: hexane– CH₂Cl₂ 1:1, **3fb**, mp 117–119°C (cream crystals from Et₂O); IR: 1754, 1613 cm⁻¹; ¹H NMR: 1.82 (m, 4H), 2.27 (m, 2H), 2.42 (m, 2H), 7.48 (d, 1H, J=8.4 Hz), 7.95 (dd, 1H, J=1.8, 8.4 Hz), 8.31 (d, 1H, J=1.8 Hz), 10.40 (s, 1H); ¹³C NMR: 18.8, 21.5, 21.6, 23.3 (CH₂), 105.3, 131.4, 143.9, 164.2 (C), 123.2 (CF₃), 131.8 (C–CF₃), 125.4, 126.3, 131.9 (CHAr), 170.2 (C=O), 187.7 (CHO). Anal. calcd for $C_{15}H_{12}F_{3}NO_{3}$: C, 57.88; H, 3.89; N, 4.50. Found: C, 57.98; H, 3.94; N, 4.36.

From **1g** and **2b**, heated for 5 h, SiO₂ eluent: hexane–Et₂O 1:1, **3gb**, mp 95–98°C (ochre crystals from Et₂O–hexane); IR: 1730, 1679, 1630, 1597 cm⁻¹; ¹H NMR: 2.56 (t, 2H, J=5.8 Hz), 2.93 (t, 2H, J=5.8 Hz), 3.58 (s, 2H), 7.54 (d, 1H, J=8.4 Hz), 8.02 (dd, 1H, J=2.2, 8.4 Hz), 8.37 (d, 1H, J=2.2 Hz), 10.41 (s, 1H); ¹³C NMR: 20.6, 24.5, 25.5 (CH₂), 103.3, 132.7, 133.0, 143.1, 163.3 (C), 123.2 (CF₃), 126.5, 126.8, 132.2 (C–CF₃), 168.9 (C=O), 187.6 (CHO). Anal. calcd for C₁₄H₁₀F₃NO₃S: C, 51.06; H, 3.06; N, 4.25. Found: C, 51.14; H, 3.21; N, 4.30.

1.1.4. Synthesis of quinolines 5, 6 and tetrahydroquinolines 7: general procedure. The compound **3** (1 mmol) was dissolved in EtOH (15 ml), 10% Pd/C (40 mg) was added and the mixture hydrogenated under atmospheric pressure at rt. After 5 h the catalyst was filtered off, the solvent evaporated and the crude material was crystallized or chromatographed (see below).

From **3aa**, reaction time 6 h, SiO₂ eluent: CH₂Cl₂-Et₂O 1:1, afforded compounds 5aa, mp 190°C (beige crystals from Et₂O-hexane); IR: 1442, 1360 cm⁻¹; ¹H NMR: 2.77 (s, 3H), 4.21 (s, 2H), 7.20 (m, 2H), 7.36 (m, 3H), 7.92 (s, 1H), 8.17 (d, 1H, J=9.1 Hz), 8.44 (dd, 1H, J=2.5, 9.1 Hz), 8.70 (d, 1H, J=2.5 Hz); ¹³C NMR: 24.4 (CH₃), 39.4 (CH₂), 122.7, 124.4, 127.3, 130.4, 137.3 (CHAr), 129.3 (2×CHAr), 128.5 (2×CHAr), 126.4, 135.7, 138.2, 145.5, 149.1, 163.6 (C). Anal. calcd for C₁₇H₁₄N₂O₂: C, 73.37; H, 5.07; N, 10.07. Found: C, 73.45; H, 5.17; N, 9.98; and 6aa, mp 195-196°C (ochre crystals from Et₂O-hexane). IR: 3230, 3140, 1620, 1597, 1440 cm⁻¹; ¹H NMR: 2.62 (s, 3H), 3.90 (br s, 2H, D₂O), 4.11 (s, 2H), 6.84 (d, 1H, J=2.5 Hz), 7.20 (m, 3H), 7.30 (m, 3H), 7.58 (s, 1H), 7.90 (d, 1H, J=8.8 Hz); ¹³C NMR: 24.9 (CH₃), 39.2 (CH₂), 107.2, 120.8, 125.5, 127.9, 125.5, 127.9, 128.4, 129.2, 134.5 (CHAr), 128.5, 135.1, 137.4, 141.9, 144.7, 155.9 (C). Anal. calcd for C₁₇H₁₆N₂: C, 82.22; H, 6.49; N, 11.28. Found: C, 82.09; H, 6.42; N, 11.15.

From **3ba**, reaction time 2 h, SiO₂ eluent: from hexane to Et₂O, afforded compounds **5ba**, mp 190°C (yellow crystals from Et₂O-hexane); IR: 1601, 1521, 1376 cm⁻¹; ¹H NMR: 2.74 (s, 3H), 7.40-7.55 (m, 5H), 8.14 (s, 1H), 8.18 (d, 1H, J=9.1 Hz), 8.48 (dd, 1H, J=2.5, 9.1 Hz), 8.79 (d, 1H, J=2.5 Hz); ¹³C NMR: 25.4 (CH₃), 123.2, 124.7, 129.4, 130.6, 137.7 (CHAr), 128.7 (2×CHAr), 129.1, (2×CHAr), 126.1, 138.2, 139.0, 145.6, 149.4, 162.4 (C). Anal. calcd for C₁₆H₁₂N₂O₂: C, 72.72; H, 4.58; N, 10.60. Found: C, 72.81; H, 4.73; N, 10.31; and **6ba** mp 122-124°C (cream crystals from Et₂O-hexane); IR: 3318, 3191, 1628, 1462, 1377 cm⁻¹; ¹H NMR: 2.64 (s, 3H), 3.90 (br s, 2H, D₂O), 6.91 (d, 1H, J=2.5 Hz), 7.18 (dd, 1H, J=2.5, 9.1 Hz), 7.40-7.75 (m, 5H), 7.77 (s, 1H), 7.94 (d, 1H, 9.1 Hz); ¹³C NMR: 24.3 (CH₃), 107.8, 121.9, 128.4, 128.7, 134.8 (CHAr), 127.0 (2×CHAr), 129.1 (2×CHAr), 129.2, 136.4, 140.6, 142.3, 144.7, 153.7 (C). Anal. calcd for C₁₆H₁₄N₂: C, 82.02; H, 6.02; N, 11.96. Found: C, 82.16; H, 6.11; N, 11.81.

From **3ca**, reaction time 4 h, SiO₂ eluent: hexane-Et₂O 1:1,

9890

afforded compounds 5ca, mp 135-138°C (yellow crystals from Et₂O-hexane); IR: 1599, 1380 cm⁻¹;¹H NMR: 1.05 (t, 3H, J=7.3 Hz), 1.83 (tq, 2H, J=7.3, 7.3 Hz), 3.00 (t, 2H, J=7.3 Hz), 4.24 (s, 2H), 7.20 (m, 2H), 7.38 (m, 3H), 7.90 (s, 1H), 8.17 (d, 1H, J=9.1 Hz), 8.42 (dd, 1H, J=2.5, 9.1 Hz), 8.67 (d, 1H, J=2.5 Hz); ¹³C NMR: 14.6 (CH₃), 22.5, 38.6, 38.9 (CH₂), 122.6, 124.4, 127.3, 129.3, 129.4, 130.6, 137.8 (CHAr), 129.2 (2×CHAr), 126.2, 135.4, 18.7, 145.4, 149.2, 166.8 (C). Anal. calcd for C₁₉H₁₈N₂O₂: C, 74.49, H, 5.92; N, 9.14. Found: C, 74.60; H, 5.99; N, 9.05; and 6ca, mp 163-165°C (beige from Et₂O-hexane); IR: 3405, 3250, 1610, 1580, 1440 cm⁻¹; ¹H NMR: 1.02 (t, 3H, J=7.3 Hz), 1.74 (tq, 2H, J=7.3, 7.3 Hz), 2.91 (t, 2H, J=7.3 Hz), 3.93 (br s, 2H, D₂O), 4.15 (s, 2H), 6.82 (d, 1H, J=2.2 Hz), 7.15 (m, 3H), 7.30 (m, 3H), 7.59 (s, 1H), 7.96 (d, 1H, J=9.1 Hz); ¹³C NMR: 14.7 (CH₃), 23.2, 38.2, 39.1 (CH₂), 107.6, 121.2, 126.7, 128.8, 128.9, 129.2, 129.3, 129.9, 134.9 (CHAr), 129.1, 133.0, 140.1, 142.0, 144.4, 158.8 (C). Anal. calcd for C₁₉H₂₀N₂: C, 82.57; H, 7.29; N, 10.14. Found: C, 82.66; H, 7.38; N, 10.02.

From **3da**, reaction time 6 h, SiO₂ eluent: CH₂Cl₂–Et₂O 1:1, afforded compound **6da**, mp 150–152°C (ochre crystals from Et₂O–hexane); IR: 3410, 3240, 1640, 1557 cm⁻¹; ¹H NMR: 2.42 (s, 3H), 3.90 (br s, 2H, D₂O), 6.88 (d, 1H, J=2.5 Hz), 7.14 (dd, 1H, J=2.5, 9.1 Hz), 7.48 (m, 3H), 7.60 (m, 2H), 7.83 (s, 1H), 8.04 (dd, 1H, J=2.5, 9.1 Hz); ¹³C NMR: 21.0 (CH₃), 107.0, 121.3, 129.3, 130.8, 135.0 (CHAr), 128.6 (2×CHAr), 128.2 (2×CHAr), 129.8, 129.5, 141.5, 142.2, 145.0, 157.3 (C). Anal. calcd for C₁₆H₁₄N₂: C, 82.02; H, 6.02; N, 11.96. Found: C, 82.11; H, 6.09; N, 11.82.

From **3ea**, reaction time 3 h, SiO₂ eluent: CH₂Cl₂–Et₂O 1:1, afforded compound **6ea**, mp 160–162°C (beige crystals from Et₂O–hexane); IR: 3328, 3212, 1620, 1454 cm⁻¹; ¹H NMR: 1.19 (t, 3H, *J*=7.3 Hz), 2.77 (q, 2H, *J*=7.3 Hz), 2.98 (br s, 2H, D₂O), 6.93 (d, 1H, *J*=2.2 Hz), 7.16 (dd, 1H, *J*=2.2, 9.1 Hz), 7.50 (m, 5H), 7.87 (s, 1H), 8.07 (d, 1H, *J*=9.1 Hz) manca 1H; ¹³C NMR: 16.5 (CH₃), 22.6 (CH₂), 107.2, 121.5, 127.2, 128.5, 135.3 (CHAr), 127.1 (2×CHAr), 129.0 (2×CHAr), 129.9, 141.5, 142.5, 144.7, 157.6 (C). Anal. calcd for C₁₇H₁₆N₂: C, 82.22; H, 6.49; N, 11.28. Found: C, 82.30; H, 6.58; N, 11.08.

From **3fa**, reaction time 5 h, SiO₂ eluent: from CH₂Cl₂– AcOEt 3:1 to AcOEt, afforded compound **6fa**,²² mp 111– 112°C (beige crystals from *i*-Pr₂O); IR: 3329, 3198, 1634, 1457 cm⁻¹; ¹H NMR: 1.93 (m, 4H), 2.94 (t, 2H, *J*=6.6 Hz), 3.08 (t, 2H, *J*=6.6 Hz), 3.80 (br s, 2H, D₂O), 6.83 (d, 1H, *J*=2.6 Hz), 7.08 (dd, 1H, *J*=2.6, 8.8 Hz), 7.59 (s, 1H), 7.81 (d, 1H, *J*=8.8 Hz); ¹³C NMR: 23.4, 23.7, 29.7, 33.5 (CH₂), 107.3, 121.3, 129.6, 133.4 (CHAr), 128.9, 131.6, 142.1, 144.2, 155.8 (C). Anal. calcd for C₁₃H₁₄N₂: C, 78.75; H, 7.12; N, 14.13. Found: C, 78.83; H, 7.19; N, 14.04.

From **3ga**, reaction time 6 h, afforded compound **5ga**, mp 168–170°C (ochre crystals from CH₂Cl₂–pentane); IR: 1580, 1530 cm⁻¹; ¹H NMR: 3.16 (t, 2H, *J*=6.3 Hz), 3.48 (t, 2H, *J*=6.3 Hz), 4.00 (s, 2H), 8.06 (s, 1H), 8.14 (d, 1H, *J*=9.3 Hz), 8.45 (dd, 1H, *J*=2.4, 9.3 Hz), 8.76 (d, 1H, *J*=2.4 Hz); ¹³C NMR: 26.0, 26.4, 34.8 (CH₂), 122.5, 124.7, 130.6, 135.2 (CHAr), 126.5, 132.4, 146.2, 149.3, 163.0 (C). Anal. calcd for $C_{12}H_{10}N_2O_2S$: C, 58.52; H, 4.09; N, 11.37. Found: C, 58.66; H, 4.17; N, 11.30.

From **3ab**, reaction time 4 h, SiO₂ eluent: from CH₂Cl₂hexane 1:1 to CH₂Cl₂-Et₂O, afforded compounds **5ab**, mp 84–86°C (cream crystals from hexane); IR: 1452 cm⁻¹; ¹H NMR: 2.72 (s, 3H), 4.19 (s, 2H), 7.20 (m, 2H), 7.38 (m, 3H), 7.82 (m, 2H), 8.04 (s, 1H), 8.13 (d, 1H, J=8.8 Hz); ¹³C NMR: 24.0 (CH₃), 39.3 (CH₂), 124.4 (CF₃), 124.8, 125.4, 127.0, 129.7, 136.5 (CHAr), 129.1 (2×CHAr), 129.2 (2×CHAr), 127.9 (C-CF₃), 126.3, 134.7, 138.4, 147.8, 161.7 (C). Anal. calcd for C₁₈H₁₄F₃N: C, 71.75; H, 4.68, N, 4.65. Found: C, 71.86; H, 4.77; N, 4.63; and 7ab, oil; IR: 3413, 1619, 1519 cm⁻¹; ¹H NMR: 1.26 (d, 3H, *J*=6.6 Hz), 2.20-2.80 (m, 5H), 3.60 (m, 1H), 4.16 (br s, 1H, D₂O), 6.49 (d, 1H, J=8.4 Hz), 7.15–7.37 (m, 7H); ¹³C NMR: 22.2 (CH₃), 31.0, 34.7 (CH₂), 38.9, 54.7 (CH), 112.9, 124.2, 126.9, 127.2 (CHAr), 128.5 (2×CHAr), 128.7 (2×CHAr), 118.8 (CF₃), 121.9 (C-CF₃), 123.8, 140.9, 146.6 (C). Anal. calcd for C₁₈H₁₈F₃N: C, 70.81; H, 5.94; N, 4.59. Found: C, 70.92; H, 5.99; N, 4.52.

From **3bb**, reaction time 12 h, SiO₂ eluent: from CH₂Cl₂hexane 1:10 to CH₂Cl₂, afforded compounds **5bb**, mp 156-158°C (yellow crystals from Et₂O-hexane); IR: 1450 cm⁻¹; ¹H NMR: 2.72 (s, 3H), 7.40–7.53 (m, 5H), 7.91 (dd, 1H, J=1.9, 8.8 Hz), 8.06 (s, 1H), 8.13 (d, 1H, J=1.9 Hz), 8.18 (d, 1H, J=8.8 Hz); ¹³C NMR: 24.9 (CH₃), 122.9 (CF₃), 125.1, 125.3, 128.3, 129.7, 137.0 (CHAr), 128.8 (2×CHAr), 129.3 (2×CHAr), 126.1 (C-CF₃), 127.9, 137.4, 139.3, 148.1, 160.4 (C). Anal. calcd for C₁₇H₁₂F₃N: C, 71.08; H, 4.21; N, 4.88. Found: C, 71.19; H, 4.29; N, 4.99; and **7bb**, oil; IR: 3411, 1620, 1521 cm⁻¹; ¹H NMR: 0.99 (d, 3H, J=6.6 Hz), 3.14 (m, 2H), 3.25 (m, 1H), 3.78 (m, 1H), 4.25 (br s, 1H, D₂O), 6.56 (d, 1H, J=8.8 Hz), 7.17-7.35 (m, 7H); ¹³C NMR: 19.9 (CH₃), 33.1 (CH₂), 46.3, 59.2 (CH), 113.0, 124.2, 126.3, 127.3 (CHAr), 128.5 (2×CHAr), 128.9 (2×CHAr), 119.2 (CF₃), 120.6 (C-CF₃), 123.5, 141.2, 146.2 (C). Anal. calcd for C₁₇H₁₆F₃N: C, 70.09; H, 5.54; N, 4.81. Found: C, 69.93; H, 5.73; N, 4.70.

From **3cb**, reaction time 6 h, SiO₂ eluent: CH₂Cl₂-hexane 1:2, afforded compounds **5cb**, mp $68-69^{\circ}$ C (beige crystals from hexane); IR: 1449 cm⁻¹; ¹H NMR: 1.04 (t, 3H, J=7.3 Hz), 1.81 (tq, 2H, J=7.3, 7.3 Hz), 2.99 (t, 2H, J=7.3 Hz), 4.23 (s, 2H), 7.20 (m, 2H), 7.34 (m, 3H), 7.82 (m, 2H), 8.03 (s, 1H), 8.18 (d, 1H, J=9.1 Hz); ¹³C NMR: 14.2 (CH₃), 23.2, 38.2, 39.2 (CH₂), 124.2, 125.2, 127.5, 129.2, 136.2 (CHAr), 128.4 (2×CHAr), 129.2 (2×CHAr), 122.9 (CF₃), 126.6 (C-CF₃), 125.9, 134.1, 138.0, 147.7, 161.5 (C). Anal. calcd for $C_{20}H_{18}F_3N$: C, 72.93; H, 5.51; N, 4.25. Found: C, 73.03; H, 5.60; N, 4.17; and 7cb, oil; ¹H NMR: 0.94 (t, 3H, J=6.6 Hz), 1.51 (m, 4H), 2.07 (m, 1H), 2.49 (m, 2H), 2.75 (m, 2H), 3.12 (m, 1H), 3.43 (br s, 1H, D_2O), 6.55 (d, 1H, J=8.7 Hz), 7.13–7.37 (m, 7H); ¹³C NMR: 14.5 (CH₃), 19.2, 29.2, 34.4, 39.2 (CH₂), 36.6, 54.3 (CH), 113.1, 124.5, 126.5, 127.3 (CHAr), 128.8 (2×CHAr), 129.5 (2×CHAr), 118.2 (CF₃), 119.7 (C-CF₃), 118.9, 140.6, 146.5 (C). Anal. calcd for C₂₀H₂₂F₃N: C, 72.05; H, 6.65; N, 4.20. Found: C, 72.12; H, 6.79; N, 4.13.

From **3db**, reaction time 10 h, SiO₂ eluent: from hexane– Et₂O 5:1 to Et₂O, afforded compounds **5db**, mp 134–136°C (white crystals from Et₂O–hexane); IR: 1440, 1360 cm⁻¹; ¹H NMR: 2.54 (s, 3H), 7.52 (m, 3H), 7.62 (m, 2H), 7.85 (d, 1H, J=8.4 Hz), 8.13 (m, 2H), 8.26 (d, 1H, J=8.4 Hz); ¹³C NMR: 21.1 (CH₃), 124.8, 125.1, 129.0, 130.9, 137.8 (CHAr), 128.8 (2×CHAr), 129.2 (2×CHAr), 126.1 (CF₃), 129.0 (C–CF₃), 126.9, 131.2, 140.7, 148.0, 163.1 (C). Anal. calcd for $C_{17}H_{12}F_{3}N$: C, 71.08; H, 4.21; N, 4.88. Found: C, 71.16; H, 4.33; N, 4.80; and **7db**, mp 78–80°C (white crystals from hexane); IR: 3400, 1610, 1529 cm⁻¹; ¹H NMR: 0.84 (d, 3H, *J*=7.0 Hz), 2.33 (m, 1H), 2.54 (dd, 1H, *J*=7.3, 16.2 Hz), 2.95 (dd, 1H, *J*=4.4, 16.2 Hz), 4.51 (br s, 1H, D₂O), 4.58 (d, 1H, *J*=3.6 Hz), 6.58 (d, 1H, *J*=8.8 Hz), 7.25–7.35 (m, 6H), 7.70 (m, 1H); ¹³C NMR: 15.8 (CH₃), 31.7, 59.7 (CH), 33.3 (CH₂), 113.1, 124.6, 127.1, 128.6 (CHAr), 127.5 (2×CHAr), 127.8 (2×CHAr), 118.0 (CF₃), 119.5 (C–CF₃), 119.9, 142.2, 147.2 (C). Anal. calcd for $C_{17}H_{16}F_{3}N$: C, 70.09; H, 5.54; N, 4.81. Found: C, 70.20; H, 5.63; N, 4.70.

From **3eb**, reaction time 6 h, SiO₂ eluent: hexane-CH₂Cl₂ 1:1, afforded compounds **5eb**, oil; IR: 1453 cm⁻¹; ¹H NMR: 1.28 (t, 3H, J=7.3 Hz), 2.27 (q, 2H, J=7.3 Hz), 7.58 (m, 5H), 7.87 (dd, 1H, J=1.8, 9.1 Hz), 8.21 (d, 1H, J=1.8 Hz), 8.28 (s, 1H), 8.49 (d, 1H, J=9.1 Hz); ¹³C NMR: 16.9 (CH₃), 24.6 (CH₂), 120.7 (CF₃), 125.2, 125.9, 127.9, 129.5, 137.2 (CHAr), 127.8 (2×CHAr), 129.3 (2×CHAr), 127.1 (C-CF₃), 126.3, 137.5, 139.0, 147.9, 160.2 (C). Anal. calcd for C₁₈H₁₄F₃N: C, 71.75; H, 4.68; N, 4.65. Found: C, 71.84; H, 4.79; N, 4.59; and 7eb, mp 85-87°C (cream crystals from Et₂O-hexane); IR: 3311, 1665, 1454 cm⁻¹; ¹H NMR: 0.94 (t, 3H, J=7.3 Hz), 1.95 (m, 1H), 2.05 (m, 1H), 2.39 (1H, m), 2.53 (dd, 1H, J=9.1, 16.2 Hz), 2.88 (dd, 1H, J=4.4, 16.2 Hz), 3.55 (br s, 1H, D₂O), 4.60 (d, 1H, J=3.7 Hz), 6.60 (m, 1H), 7.20-7.40 (m, 7H); ¹³C NMR: 15.7 (CH₃), 24.1, 32.4 (CH₂), 35.2, 60.1 (CH), 113.7, 124.9, 127.5, 128.4 (CHAr), 128.2 (2×CHAr), 128.3 (2×CHAr), 119.0 (CF₃), 121.5 (C-CF₃), 120.1, 142.3, 147.5 (C). Anal. calcd for C₁₈H₁₈F₃N: C, 70.81; H, 5.94; N, 4.59. Found: C, 70.90; H, 6.02; N, 4.49.

From **3fb**, reaction time 6 h, SiO₂ eluent: from hexane-Et₂O 10:1 to Et₂O, afforded compounds **5fb**, mp 47-48°C (crystals from Et_2O -hexane); IR: 1452 cm⁻¹; ¹H NMR: 1.96 (m, 4H), 3.03 (t, 2H, J=6.6 Hz), 3.17 (t, 2H, J=6.6 Hz), 7.80 (dd, 1H J=1.8, 8.8 Hz), 7.90 (s, 1H), 8.04 (d, 1H J=1.8 Hz), 8.08 (d, 1H, J=8.8 Hz); ¹³C NMR: 20.5, 25.6, 27.5, 27.7 (CH₂), 124.5, 125.9, 127.2, 136.1 (CHAr), 122.7 (CF₃), 127.0 (C-CF₃), 123.9, 131.2, 147.1, 161.2 (C). Anal. calcd for C₁₄H₁₂F₃N: C, 66.93; H, 4.81; N, 5.57. Found: C, 67.01; H, 4.90; N, 5.50; and 7fb, mp 98-99°C (crystals from Et₂O-hexane); IR: 3424, 1619, 1519 cm⁻¹; ¹H NMR: 1.45 (m, 4H), 1.62 (m, 4H), 1.99 (m, 1H), 2.56 (dd, 1H, J=4.0, 16.2 Hz), 2.91 (dd, 1H, J=5.5, 16.2 Hz), 3.57 (m, 1H, J=3.7 Hz), 3.91 (br s, 1H, D₂O), 6.45 (d, 1H, J=8.8 Hz), 7.19 (d, 1H, J=8.8 Hz), 7.17 (s, 1H); ¹³C NMR: 20.8, 24.8, 27.3, 31.8, 32.7 (CH₂), 32.5, 50.2 (CH), 118.9, 146.9 (C), 127.0, 124.2, 112.5 (CHAr), 122.1 (CF₃) 120.9 (C-CF₃), Anal. calcd for C₁₄H₁₆F₃N: C, 65.87; H, 6.32; N, 5.49. Found: C, 65.96; H, 6.40; N, 5.37.

From **3gb**, reaction time 18 h, SiO₂ eluent: hexane-CH₂Cl₂ 1:1, afforded compound **5gb**, mp 231–233°C (cream crystals from hexane); IR: 1458 cm⁻¹; ¹H NMR: 3.14 (t, 2H, J=6.6 Hz), 3.46 (t, 2H, J=6.6 Hz), 3.99 (s, 2H), 7.86 (dd, 1H, J=1.8, 9.1 Hz), 7.97 (s, 1H), 8.10 (d, 1H, J=1.8 Hz), 8.13 (d, 1H, J=9.1 Hz); ¹³C NMR: 26.6, 30.1,

34.8 (CH₂), 124.2 (CF₃), 125.2, 125.6, 130.0, 134.5 (CHAr), 128.0 (C–CF₃), 126.5, 130.9, 148.2, 160.9 (C). Anal. calcd for $C_{13}H_{10}F_3NS$: C, 57.98; H, 3.74; N, 5.20. Found: C, 58.10; H, 3.83; N, 5.10.

1.1.5. Synthesis of 2-(4-benzyl-3-methyl-5-oxo-5H-isoxazol-2-yl)-pyridine-3-carbaldehyde 8. To a solution of 1'a (5 mmol) in DMF (4 ml) the 2-fluoro-pyridine-3-carbaldehyde²³ was added. The mixture was heated to 50°C for 4 h, then the reaction was diluted with brine (20 ml) and extracted with Et_2O (2×20 ml). The organic layer was dried, filtered and evaporated and the residue purified by silica gel column chromatography, eluent hexane-Et₂O 1.1 to give compound 8, yield 60%, mp 108°C (white crystals from Et₂O). IR: 1738, 1690, 1633, 1490 cm⁻¹; ¹H NMR: 2.40 (s, 3H), 3.74 (s, 2H), 7.34 (m, 5H), 7.47 (m, 1H), 8.38 (dd, 1H, J=2.2, 8.8 Hz), 8.63 (dd, 1H, J=2.2, 4.8 Hz), 10.55 (s, 1H); ¹³C NMR: 14.1 (CH₃), 28.6 (CH₂), 107.2, 126.7, 138.6, 152.7, 160.9, (C), 170.7 (CO), 124.5, 127.0, 138.4, 153.3 (CHAr), 128.7 (2×CHAr), 129.1 (2x CHAr), 188.9 (CHO). Anal. calcd for C₁₇H₁₄N₂O₃: C, 69.38; H, 4.79; N, 9.52. Found: C, 69.25; H, 4.88; N, 9.45.

1.1.6. Synthesis of [1,8]naphthyridine 9 and tetrahydro**naphthyridine 10.** To a solution of compound **8** (2 mmol) in AcOEt (25 ml) 10% Pd/C was added and the mixture was hydrogenated under atmospheric pressure and rt. After 4 h the catalyst was filtered off, the solvent evaporated and the crude material was chromatographed, eluent CH₂Cl₂-Et₂O 3:1, to give compound 9,24 yield 68%, mp 123-125°C (white crystals from Et_2O -hexane); IR: 1630, 1490 cm⁻¹; ¹H NMR: 2.77 (s, 3H), 4.20 (s, 2H), 7.20 (m, 2H), 731–7.47 (m, 4H), 7.78 (s, 1H), 8.10 (dd, 1H, J=2.2, 8.0 Hz), 9.06 (dd, 1H, J=2.2, 4.4 Hz), ¹³C NMR: 24.1 (CH₃), 39.0 (CH₂), 121.6, 126.9, 136.4, 136.5, 152.9 (CHAr), 129.0 (2×CHAr), 129.1 (2×CHAr), 121.7, 134.4, 138.6, 155.2, 162.9 (C). Anal. calcd for C₁₆H₁₄N₂: C, 82.02; H, 6.02, N, 11.96. Found: C, 82.13; H, 6.10; N, 11.89; and compound 10, yield 13%, oil; ¹H NMR: 1.91 (tt, 2H, J=5.9, 6.2 Hz), 2.31 (s, 3H), 2.69 (t, 2H, J=6.2 Hz), 3.41 (t, 2H, J=5.9 Hz), 3.84 (s, 2H), 5.36 (br s, 1H, D₂O), 6.95 (s, 1H), 7.18 (m, 2H), 7.26-7.36 (m, 3H); ¹³C NMR: 31.3 (CH₃), 20.5, 26.0, 36.8, 41.3 (CH₂), 127.0, 141.9 (CHAr), 128.4 (2×CHAr), 129.2 (2×CHAr), 120.6, 121.6, 138.4, 155.3, 160.4 (C). Anal. calcd for C₁₆H₁₈N₂: C, 80.63; H, 7.61; N, 11.75. Found: C, 80.71; H, 7.70; N, 11.69.

When the catalytic hydrogenation reaction was performed in EtOH the ratio between **9** and **10** was 24 and 74%.

Acknowledgements

The authors gratefully acknowledge the Ministero dell'Istruzione, dell'Università e della Ricerca (MIUR) for financial support.

References

1. Beccalli, E. M.; Marchesini, A. J. Heterocycl. Chem. 1980, 17, 763–765.

- 2. Beccalli, E. M.; Marchesini, A. J. Org. Chem. 1987, 52, 3426-3434.
- 3. Beccalli, E. M.; Marchesini, A.; Pilati, T. Synthesis 1991, 127–131.
- 4. Beccalli, E. M.; Marchesini, A.; Pilati, T. Synthesis 1991, 861-862.
- (a) Beccalli, E. M.; Marchesini, A.; Pilati, T. Synth. Commun. 1993, 23, 685–702. (b) Beccalli, E. M.; Gelmi, M. L.; Marchesini, A. Tetrahedron 1998, 54, 14401–14406.
- Dubè, D.; Blouin, M.; Brideau, C.; Chan, C.; Desmarais, S.; Ethier, D.; Falgueyret, J. P.; Friesen, R. W.; Girard, M.; Girard, Y.; Guay, J.; Tagari, P.; Young, R. N. *Biorg. Med. Chem. Lett.* **1998**, *8*, 1255–1260.
- 7. Kalluraya, B.; Sreevinasa, S. Farmaco 1998, 53, 399-404.
- Maguire, M. P.; Sheets, K. R.; Mc Vety, K.; Spada, A. P.; Zilberstein, A. J. Med. Chem. 1994, 37, 2129–2137.
- (a) Dormer, P. G.; Eng, K. K.; Farr, R. N.; Humphrey, G. R.; McWilliams, J. C.; Reider, P. J.; Sager, J. W.; Volante, R. P. J. Org. Chem. 2003, 68, 467–477. (b) Arcadi, A.; Chiarini, M.; Di Giuseppe, S.; Marinelli, F. Synlett 2003, 203–206. (c) Kobayashi, K.; Yoneda, K.; Mizumoto, T.; Umakoshi, H.; Morikawa, O.; Konishi, H. Tetrahedron Lett. 2003, 44, 4733–4736. (d) Huma, H. Z. S.; Halder, R.; Kaltra, S. S.; Das, J.; Iqbal, J. Tetrahedron Lett. 2002, 43, 6485–6488. (e) Kim, J. N.; Chung, Y. M.; Im, Y. J. Tetrahedron Lett. 2002, 43, 6209–6211. (f) Cacchi, S.; Fabrizi, G.; Goggiamani, A.; Moreno-Manas, M.; Vallribera, A. Tetrahedron Lett. 2002, 43, 5537–5540. (g) Legros, J.-Y.; Primault, G.; Fiaud, J.-C. Tetrahedron 2001, 59, 2507–2514.
- 10. (a) Jones, G. Quinolines. The Chemistry of Heterocyclic

Compounds, Wiley: London, 1977; Vol. 32. (b) Beller, M.; Thiel, O. R.; Trauthwein, H.; Hartung, C. G. *Chem. Eur. J.* **2000**, 2513–2522.

- 11. Ashok, K.; Sridevi, G.; Umadevi, Y. Synthesis 1993, 623-626.
- (a) Beccalli, E. M.; Marchesini, A.; Pilati, T. *Tetrahedron* **1988**, 44, 6225–6234. (b) Beccalli, E. M.; Benincori, T.; Marchesini, A. *Synthesis* **1988**, 630–631. (c) Beccalli, E. M.; Marchesini, A.; Pilati, T. *Tetrahedron* **1997**, 53, 10433–10440.
- (a) Panizzi, L. *Gazz. Chim. Ital.* **1946**, *76*, 44–55. (b) Parrini,
 V.; Pepino, R.; Belgodere, E. *Gazz. Chim. Ital.* **1974**, *104*, 715–729.
- Murahashi, S.; Imada, Y.; Hirai, Y. Bull. Chem. Soc. Jpn 1989, 62, 2968–2976.
- 15. Silveira, Jr. A.; Satra, S. K. J. Org. Chem. 1978, 44, 873-874.
- 16. Jacquier, R.; Petrus, C.; Petrus, F.; Verducci, J. Bull. Soc. Chim. Fr. 1970, 2685–2690.
- Beccalli, E. M.; Gelmi, M. L.; Marchesini, A.; Pilati, T. J. Org. Chem. 1987, 52, 1666–1669.
- 18. Boulton, A. J.; Katritzky, A. R. Tetrahedron 1961, 12, 41-50.
- Wallingford, V. H.; Homeyer, A. H.; Jones, D. M. J. Am. Chem. Soc. 1941, 63, 2252–2254.
- Katritzky, A. R.; Oksne, S.; Boulton, A. J. *Tetrahedron* 1962, 18, 777–790.
- 21. Bennet, G. M.; Scorah, L. V. D. J. Chem. Soc. 1927, 194-200.
- Berde, H. V.; Gogte, V. N.; Tiak, B. D. Indian J. Chem. 1972, 10, 332–336.
- 23. Mallet, M. J. Organomet. Chem. 1991, 406, 48-56.
- 24. See Ref. 9a.